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FOREWORD
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this location was Mr. Joel Levinthal. Most of the analytical effort in
support of this project was provided by Dr. Frederick Chichester, who
wrote all sections of this report. The guidance of Dr. Henry B. Waites

and Mr. Stan Carroll of MSFC during the course of this study is gratefully

acknowledged.



ABSTRACT

The problem of applying modular attitude control to a rigid body - flexi-
ble suspension model of a flexible spacecraft with some state variables
inaccessiblz was addressed by developing a sequence of single axis models
and generating a series of reduced state linear observers of minimum order
to reconstruct those scalar state variables that were inaccessible. The
specific single axis models treated consisted of two, three and four rigid
bodies, respectively, interconnected by a flexible shaft passing through
the mass centers of the bodies. Reduced state linear cbservers of all
orders up to one less than the total number of scalar state variables were

generated for each of the three single axis models cited.
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SECTION 1
1.0 INTRODUCTION

This report is submitted in compliance with the Scope of Work under con-
tract NAS8-33979. The period of performance covered by the contract is
from October 15, 1982 to September 30, 1983. The submission and approval
of this report constitute the successful completion of the "Exhibit C”

portion of the contract.

This report is a sequel to four others, two of them previously submitted
under a different contract number, The two prior reports, under a differ-
ent contract number, references (1-1) and (1-2), were submitted in October
1978 and September, 1979 and covered the periods from July 27, 1977 to
July 27, 1978 and from August 26, 1978 to August 26, 1979, respectively,
in compliance with "Exhibit A" of contract NAS8-32660.

Two prior final reports were prepared under contract NAS-33979. Reference
(1-3) was submitted on March 8, 1982 and covered the period from August
15, 1980 to October 15, 1981 in compliance with "Exhibit A" of the con-
tract. Reference {l-4) was submitted on March 18, 1983 and covered the
period from October 16, 1981 to October 31, 1982 in compliance with
"Exhibit B".

1.1 OBJECTIVE

The sections that follow summarize the effort expended on the Modular De-
gign Attitude Control System Study contract from November 1, 1982 to Sep-
tember 30, 1983. In prior applications of modular attitude control to
rigid body-flexible suspension approximations of the rotational dynamics
of prototype flexible spacecraft, it was assumed that all of the scalar
state variables of the linearized models were accessible for measurement
and/or control. Actual spacecraft to be controlled almost never satisfy

such a broad condition., Therefore, the principal objective of the devel-



1.2

1.3

opment of modular attitude control, completed September 30, 1983, was the
generation of a seties of lineaf observers to suppott the application of
control to state variable models of flexible spacecraft for which one or

more state variables are inaccessible.
SCOPE
Study effort was concentrated in two main areas:

A. Development of a series of single axis state variable models of flexi-=
ble gpacectaft to be utilized in the compatison of diffefent approach=

es to the development of modular attitude control systems. These mod=

el developed in Task A correspending to various numbers and distribu-
tions of inaccéessible state variables following the approaches pre-
sented in Luenbetger (1=5), (1-6), (1=7), and Sage (1=8).

GENERAL
This repett is comprised of five sections. Sections 2 and 3 deseribe the
dévelopment of the two and three body single axis state variable models,
respectively, of a prototype flexible spacecfaft and the generation of the
minimum order reduced state linear obsetvers for the reconstruetion of
inac¢cessible scalar state variables of these models. Section 4 portrays
the expansion of the three body single axis state variable model to a foutr
body model as an example of the effects of adding another wass to an ex=
isting modél and deseribes the generation of the minimum order reduced

ble scalar state variables of the four body model. Section 5 lists a num=

ber of conclusions and recommendations drawn from generation of linear



observers for the series of single axis state variable models described

above., References are listed at the end of each section.

The original RFQ requested that the International System of units (desig-
nated as SI) be used in the program and in any reporting. Torques, mo-
ments, angular momentum, moments of inertia and distances, however, are
stated in English units since this was the system of units used in pre-

senting all of the vehicle data in the RFQ.

(¥3}
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2.0

2.1

SECTION 2

DEVELOPMENT OF TWO BODY SINGLE AXYS MODEL AND ITS REDUCED
STATE LINEAR OBSERVERS

MODEL EQUATIONS
The state variable form of the two body single axis model of a flexible

spacecraft shown in Figure 2-1, assuming m of its four scalar state varia-

bles are accessible, may be expressed as follows.

i::A?E-}-BE (2~1)
y=0Cx (2-2)
where:

T e , T
X = (xl, Koy Xqy x4) = (81, 31, 62, 82) = state vector

T
T T
u = (u), uz)T = (i%' Tg) = control vector
1 2
y= (yl, eoay ym)T = yector of measured or observed states (m = [,2,3)

A = 4%4 gtate vector coefficient matrix
B = 4xr control vector coefficient matrix (r = 1 or 2)

C = mx4 measurement or observation vector coefficient matrix

"o 1 0
R e~ T T
0 0 0 1 (2-3)
2, 0 Ty 0
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FIGURE 2-1
TWO BODY SINGLE AXiS MODEL



Hl g

ayq = (2-4)
1
1 (2-5)
a IR — 2-5
41 I2
0
1
B = (2-6)

(=]

0
0
0
i

The block diagram corresponding to this model 1s depicted in Vigure 2-2.
2,2 REDUCED STATE LINEAR OBSERVERS
2.2.1 Introduction

The minimum order (number of scalar state varlables) of a reduced state
linear observer required to reconstruct the 4-m Inaccessible scalar states
of the two body single axis model represented by equations (2-1) through
(2-6) is p = 4~m., This reconstruction was accomplished for a given state

variable model in three main stages.
1) Synthesizing a linear observer of minimum required order (p).

2) Defining a synthesized variable corresponding to each of the inacces-

sible state variables of the given state variable model.

3) Expressing each synthesized variable as a function of the state varia-
bles of the reduced state observer and the accessible state variables

of the given state variable model.
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State and Observation Equations:

X

"

Ax + Bu

y = Cx

FIGURE 2--2

ﬂ}.%

LINEARIZED STATE VARTABLE MODEL OF THE SYSTEM TO BE CONTROLLED



The equations for the reduced state observers corresponding to the state

variable model of equations {(2-1) through (2-6) are the followinug.

z = Dz + Eu + Gy . (2-7)

z=Tx (2-8)
whare:

D = pxp observer coefficient matrix (assumed diagonal)

E = TB = px4 observer control vector coefficient matrix (2-9)

G = pxm obsarver vector of observed states coefficient matrix

T = px4 observer weighting matrix

The corresponding block diagram appears in Figure 2-3,

2:2.2 Observer Synthesis Equations
The equations for synthesizing the reduced state linear observers, based
on those appearing in Luenberger (2-1), {2~2) and (2-3) and Sage (2-4),

ware written in the {ollowing form.

TA - DT = F (2-10)
F = GC, (2-11)

For

D = . (2-12)
(:) ]
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Observer Equations:

z =Dz + Gy + Eu

Since Gy = GCx = Fx,

2z =Dz + Fx + Eu

FIGURE 2-3
LINEAR OBSERVER CORRESPONDING TO
LINEARTZED STATE VARIABLE MODEL OF FIGURE 2-2

10



11 Y12 Fi2 Big
T =
t t t t
Pyl ps2 p93 P’4
fh fiz £y fyy
F =

psl "p,2 "p,3 Tp,4

(2-13)

(2-14)

and the form of the A matrix given in equation (2-3) the observer synthe-

sis equations reduce to the following general forms.

(A0 (CEy M B 0D = (8y,)

i 11542 1072,1 Fyg*dysfas)
tiz = A
12
. A T T U T I T ACT C A T L TR
14 3

typ = dystyp + By

tig = dygtyy + 44

il

(2~-15)



where

2
=(dy;%ay9) 241
840 = )
a3 ~(dj +ayy)
(2-16)
2., 2
= d;;°(dg;“+aggrag))
(B45)1,5 = Agp without the elements of the ith row and jth

column.

Inaccessibility of a state variable in the model equations (2-1), (2-2) is
reflected by a corresponding null column in the ohservation matrix, C, and
a corresponding null column in the F matrix as implied by equation (2-11).
For the generation of reduced order observers for the two body model the

number of inaccessible state variables can be 1, 2 or 3.

2.3 FIRST ORDER OBSERVERS (p = 1)
A first order linear observer corresponds to inaccessiblity of one of the
four scalar state variables of the two body model. Therefore, the total

number of first order linear observers that can be synthesized for the two

body model is given by:

The observer equation then reduces to:

z = dz + Eu + Gy, (2-17)



the F and T matrices reduce to:

F= [fl £, f3 f4]
(2-18)
T =[] ty t3 t4)

and the observer synthesis equations, equation set (2-15) and equation (2-

16), reduce to the following forms.:

. (8,)) (£ +aE,) = (4,), | (£Hdf))
2 5
) =-(A2)192(fl+df2) + (A2)2'2(f3+df4)
4 5,
tl = dtz + fz
(2-19)

t: = dt4 + f4

2

~(d +a23) 341 -

by = _td%ea. ) = d7(d7+ ayyt a,,)

224 241

(Az)i,j = A2 without the elements of the ith row and jth column

Since this case corresponds to inaccessibility of one state variable, one
Of the fi (i=1, LRI 4)-‘—'0.:

13

W
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Example

Suppose X4, the scalar state representing the angular rate of body 2, is

inaccessible.

Then it is assumed that:

1 0 0 0
C = 01 0 0O (2-21)
0 0 1 0O
for which:
F = [ £ £, £5301 (2-22)
and T is of the form shown in equation (2~-18).
From equations (2-10), (2~21) and (2~22),
and from equations (2-4), (2-9) and (2~i8)
E=1{tyt,] {2-24)

This equation corresponds to r = 2, control torques applied to both bod-

ies. For control torque applied only to body !,
and for control torque applied only to body 2,

E=1[0¢t,] (2-26)



The equations for determining the elements of the T matrix reduce to the

following forms.

R WA B Ll e W

2 Az

272,253

. =—(A2)1,2(f1+df2) + (A

4 A
2 (2-27)

rt
[
1]

dtz + f2

From equations (2-8) and (2-18),

z = tx + t2x2 * X, + £,%, (2-28)

~

where X, = the synthesized Xy

Solving for x, yields:

4
x =Lz -1¢x] (2-29)
4 ¢ 131 1%

For inaccessibility of each of the remaining three scalar state variables
the equations for determining ty, set (2-19) and equations (2-8) and (2-
21) through (2-29) are appropriately modified.

15



2.4

SECOND ORDER OBSERVERS (p = 2)

The equation for a linear observer of order two corresponds to two of the
four secalar state variables being inaccessible. It is represented here e3
equation (2~7). The total number of second order observers that can be

synthesized for the two body model is given by:

4 4!
Cp =227 = 6
If the observer coefficient matrix is assumed to be diagonal in this case,

it appears as follows:

0
p = |, (2-30)
22
Since the observer is of order two,
T
E_ = (21,22) (2_31)
fll flz f13 f14
F = (2-32)
Fa1 f22 faz By
and
11 f12 Ei3 fpg
T = (2-33)
Far B2z fa3 By

16



32

1

The specific forms of the equations for ganerating the elements of T de~
pend upon which two of the scalar states are inaccessible. For each inac-

cessible state the corresponding columns in the C and F matrices are null.

Examgle

Corresponding to the angular position and rate, respectively, of body 2,
suppose that the scalar states x4 and x, are inaccessible. Then the equa-

tions for generating the elements of the T matrix assmme the following

forms.

C . (8450, Eg+dy5850)

i2 A12

i=1’2

S T PP TRAS TAP T

14 9

(2-34)

ti1 = 4yt + £5p

ti3 = djgtis

(dii 453) A
A = = (d )
12 11t323%3,)
253 -} 11%341)

(2-35)

(AiZ)i,j = Aiz without elements of ith row and jth column

17
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From egquation (2~8),

-~

z,~t, . X -t X

13 “l4 X3 1 11717 12%2
- = (2-36)
23 24 || %4 | %2751 %1 02%2

where Xa and x, are synthesized state variables.

€13 t14
B3ty

’= 13 Fag “Fyy Tp3 F O

(A2)i,j = A, without elements of ith row and jth column

~ () (gt gRg) = (4y), (2t X =ty ,x,)
X, = (2-37)
3 5

~

: T(A)) a{zy Xty pRg) + (B)), o (2,7, X <ty %)
.-

A

(2-38)
2

For Xg and x4 inaccessible, it is assumed that:

C = (2-39)

Il 12
F = (2"40)

21 22

18



2.5

From F = GC,

£ f
¢ = [fll flz ] (2-41)
Y

From E = TB,

for r = 2
t12 b4 :
E = (control torques applied to both bodies) (2-42)
t t
22 “24
t12 0
E = " for control rtestricted to body 1 (2-43)
22
[0 £y,
E = 0 . for control restricted to body 2 (2~44)
24

THIRD ORDER OBSERVERS (p = 3)

The equation for the linear ohserver of order one less than the system's
dimension corresponds to three of the four scalar state varilables being
inaccessible. It is represented here as equation {(2-7). The total number
of third order linear observers that can be synthesized for the two body

model is given by:

If the observer coefficient matrix is assumed to be diagonal iIin this case

it appears as follows,

ray



Since the observer is of order 3,

z = (z, 29, 23)T

1
F=1£,
fa1
and
11
T=] %
£31

12

22

32

12

22

32

13
23

33

(2-45)
(2-46)
£14
£as (2-47)
a4
£14
24 (2-48)
€3

The specific forms of the equations for generating the elements of T

depend upon which three of the scalar states are inaccessible.

For each

inaccessible state the corresponding columns Iin the C and F matrices are

null.

Example

Suppose the scalar states, Xy, Xq and Xy repregsenting the angular rate of

body 1 and the angular position and rate of body 2, are inaccessible,

Then the equations for generating the elements of the T matrix assume the

following form since fi2 = f13 = f14 =0 fordi=1, 2, 3.

20



(o2
D
[+H

2
=(dy%893)

| =
'l

(849045

Fiomt equation (2-=8}.

Y12 F13 fu4
Eaz  Ea3  Egy
32 F33 Fas |

~ ~ ~

ORIGINAL PAGE 19
OF POOR QUALITY

i=1, 2,3

W,
5 = di4(dys*agqta,,

-(dii+gﬁl)

2 2%t %)
3 % zzétnxl
N B N 1L

)

* Ay, without elements of ith row and jth column

(2=49)

(2=50)

(2=51)



f12 B3ty
= #
Let A3 t22 t23 t24 0
£32 b33ty
where
(AS)i 5 = A3 without elements of ith row and jth column
]
3 1+j
. -7V, (z,=x.)
. 1=1 371,41 "1 i =1, 2, 3
i+ T [ 1554

For X9 Xy and X, inaccessible, it ig assumed that:

From E = TB,

12 t14 for r = 2

2% (control torques applied to both bhodies)

34

(2-52)

(2-53)

(2-54)

(2-55)

(2-56)

B}
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SECTION 3

3.0 DEVELOPMENT OF THREE BODY SINCLE AXIS MODEL AND ITS REDUCED
STATE LINEAR OBSERVERS

3.1 MODEL EQUATIONS

The state variable form of the three body single axis model of a flexible

spacecraft showm in Figure 3-1 may be expressed as follows:

X = Ax + Bu (3-1)

y=0 (3-2)
where:

2 = (%, , Ry Koy X, 3 Xy X )T= (o, 8 » 9., 0 s 9., 3 )T

- 1 2 3 &4 5 6 1 1 2 2 3 3

state vector

3

T
T 1
= <u1:°°°)ur) =<TI|

|e=
I

T
o o 0, TE) (r =1, 2 or 3)
r

T
= (Yl"'°ym) = yvector of measured or observed states

<
I

C = observation matrix of dimensions m*6, m = 1, 2,+s., 5 (Minimum

dimension of reduced order observer required = 6~m).

Partitioning of this model by rigid body results in the following forms

for its coefficient matrices.
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FIGURE 3~1
THREE BODY SINGLE AXIS MODEL
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0 ] 0 | N
“ay3 O a93 ;
o 0 1 j 0 0
s = ° | (3-3)
a0 343 0 35 O
—_—
[ ‘
0 0 0 o 0 1
1
0 0 ag i %3 O |
a =ok-l
23 7 1)
A
a7,
3-4
] =E§. { )
45 T T,
3,3 = ~(8,ta,5)
63 7 T,
0o | o | o]
1 | 0 | 0
ol o | o
B = 0 |7 L1 o for r = 3 (control torques applied to all (3-5)
— e three bodies)
o | o | o
0o | 0o | 1

The block diagram corresponding to this model is shown in Figure 2-2.
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REDUCED STATE LINEAR OBSERVERS
1 Introduction

For the thiée body single axis model represented by equations (3=1)
through (3=5), the minimum ordéf of a teduced state linear observer re-

quired to generate the inaccessible states 1s p = 6= (m =1, 2, .., 5).

written In the form représented by equations (2-7) and (2=8) where, in
this case, the obsetver coefficiént matrix, D, 15 assumed to be diagenal
and of dimensions pxps The corresponding obsetver weighting matrix is of

the following form.

11 16
Tat . . (3=6)
_ t . . . - t_ ]
psl p,6 =

€12 14 ST
E = : : : for r = 3 (éontrol totques (3=7)
fl]. . » . . flﬁ =
T=|. . (3=8)
= F . . . . f B
pll 79’6

The corresponding observer block diagram appears in Figure 2=3.
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3.2.2 Observer Synthesis Equatioms

From Luenburger (3-1), (3-2), (3-3) and Sage (3-4) the equations for
synthesizing the reduced state linear observers for the three body single
axis model represented by equations (3-1) through (3-5) are given by
equations (2-10) and (2-11). With coefficient matrices of the forms
listed in 3.2.1 this set of observer sythesis equations reduces to the

following forms.

i+k 14k+]
. ) (=1)77(8y 30 (Ey+dy £0) + (-1 (819)9  (£y3+dy E4,)
1,2k 5
1+k+2
. (-1) (8;3)3 1 (F15tdy;F16)
A3 (3-9)
1= 1,2,000,0
k =1,2,3
Ti,2k-1 = di1%5 26 * £1 9k
where tij are elements of the T matrix
and
| -(d2 +a,.) a 0
117393 41 [
' 2 |
& = - i
13 273 (dy5ta, +a,s) 253 ‘ (3-10)
2 i
0 35 ~(dy +agq) |

]

2
~(dy3° +ap3)(833)y,1 —ap3(843)5 )

28
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where
(AiB)i,j = Aj3 without the elements of the ith row and jth column

Inaccessibility of a scalar state variable in equation set (3-1), (3-2) is
reflected by a corresponding null column in the observation matrix, C and,
as implied by equation (2-11), in the F matrix for the generation of re~

duced order observers for the three body model the number of inaccessible

scalar states can be L, 2, 3, 4 or 5.
FIRST ORDER OBSERVERS (p = 1)

A first order cbserver 1is required when only one of the six scalar state
variables of the three body model 1s inaccessible. Hence, the total aum-
ber of first order observers that can be generated for the three body mod-

el 1s given by:

The first order form of the linear observer equation is:

z =dz + Eu + Gy (3-11)

The F and T matrices associated with a first order observer for the three

body model then reduce to the following row forms.

v
|

[£, £, £5 £, £5 £4]T (3-12)

L |
I

[ty £) t3 ty tg t6]T (3-13)

The observer synthesis equations are then given by equation set (3-9) and

equation (3~-10) with 1 = 1,
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Since a first order observer corresponds to one of the scalar state varia-

bles being inaccessible, one of the £y (i=l, 2, 3, 4, 5, 6) = "

Examgle

Suppose that the scalar state representing the angular rate of body 3, Xg
is inaccessible. Then fg = 0 and the obsgerver synthesigs equations reduce

to the following forms.

k1 k+2

L DT, (B ¢ (DT, (EgHE,)

2k A
3

-3, £
+ X 2 k=1, 2, 3 (3-14)
3
ts = dt6

~

From equation (2-8) the synthesized scalar state, X is expressed in

terms of the observer variable, z), and the accessible scalar state varia~

bles as follows.

~ 5
X =t—1 [z - t,x, ] (3-15)
6 i=

!

(=]

c = I, e (3-16)

o=

30
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where 15 = 5%x5 identity matrix
From F = GC,

6=[f £ £f3f, £5 ]
From E = TB,

E = [ ty t; tg ] for r = 3

{control torques applied to all three bodies)

E = [ t, t4 O ] for control applied to bodies 1 and 2

E = [ ty 0 0 ] for control applied to body 1

E = [ t, 0 tg | for control applied to bodies 1 and 3

3.4 OBSERVERS OF INTERMEDIATE ORDER (p = 2, 3 or &)

(3-17)

(3-18)

(3-19)

(3~-20)

(3-21)

In the cases in which an intermediate number of the six scalar states of

the three body single axis model is inaccessible the minimum order of the

reduced state linear observer required to reconstruct these inaccessible

states 1s given by p. In each case the number of null columns in tha

measurement or observation matrix, C, and the F matrix also is equal to

p. The general forms of the E, F and T matrices are given in equations

(3-6), (3~7) and (3-8) for p = 2, 3 or 4 where p represents the number of

inaccessible state variables of the model. TIf any two of the six scalar

states of the three body model are inaccessible, then the total number of

second order observers that can be generated for this model is given by:

31
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6 6°5
= = ee—— -22
n, C2 15 (3-22)
In general, if any p of the six scalar states are Inaccessible, the number
of observers of order p that can be generated for the three body single

axis model is:

e 0o 86 -
np = Cp STC6p)T (3-23)

With the assumption of a diagonal D matrix the observer synthesis equa-
tions are given by equation set (3-9) and equation (3-10) where 1 =1,
LU Y pa

Example

Suppose the scalar states, Xq and %4, corresponding to the angular posi-
tion and rate, respectively, of body 3, are inaccessible. Then fi5 = £46
=0 for 1 = 1, 2 and the observer synthesis equations reduce to the

following forms for the required second order observer.

14k 4k
(=17 (8905 By rdyfep) + (D) (B30 kEya¥d i is)

1,2k A

(3-24)

i,2%x-1 = 93184, 21 + £y ox k=1,2

Where AiB is expanded in equation (3-10) and (AiB)i,j is Ay3 without the
elements of the ith row and jth column.
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From equation (2-8) the synthesized scalar states, Xg and Xg» are ex-
pressed in terms of the observer variables, z; and zy, and the accessible

state varlables as follows.

n 4
2800 TRt © )y (3B Eyy%p) (3-25)

5 5

2
(9)) (2= E t %) + (), H(2g= E E) k)
~ - 2, - Lt .x.) + Zo=, L b, X
I LA L R T U B A B e T (3-26)
2

where (Az)i,j = A, without the elements of the ith row and jth column.

For X5 and xg Llnaccessible, it is assumed that:

'o 0
C = 14 e (3-27)
0 0
where I, = x4 identity matrix
From F = GC,
f f f f
11 i2 13 14
G = {3-28)
fa1  fa2  fa3  fy

33
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t t r
12 t4 16
E = for r = 3 (control torgues {3-29)

tsy Eos tpg | applied to all three bodies)

E = for control applied to bodies 1 and 2. (3-30)

ti2 0 tie
E = for control applied to bodies | and 3. (3-31)
 t22 0 t26 |
t12 0 0
E = for control restricted to body 1. (3-32)
oo 0 0

FIFTH ORDER OBSERVERS (p = 5)
an observer of at least order five is required when any five of the six
scalar state variables of the three body models are inaccessible. There-
fore, the total number of fifth order observers that can be generated for
the three body model is expressed by the following.
n, = . =6 {3-33)

The observer synthesis equatioas are given in equation set (3-9) and equa-

tion (3~10) with i =1, 2, ass, 5

34



Since a fifth order observer corresponds to five of the six scalar states
being inaccessible, fij = f2j = f3j = f4j = f5j = () For five of the six

values of the subscript, j.

Example

Suppose that the scalar states, Xy, X3, X4, Xg and Rg s representing the
angular rate of body 1 and the angular displacements and rates of bodies 2
and 3 are inaccessible. Then £, = f34 = f;, = f35 = f1, = 0 for 1 =1,
2, s00y 95 and the observer synthesis equations reduce to the following

forms.

-1
t =

i,2k A

1301 ,kf11
i3

(3-34)
i= 1, 2, LI 5
k=1, 2,3

Ei,2k-1 = diitq 2k

where Ayq is expanded in equation (3-10) and (AiB)i,j is Aj4 without the
elements of the ith row and jth column.

~ ~ -~ ~ ~

The synthesized scalar state wariables, X9 x3, Xy Xg and x6

pressed in terms of the observer scalar variables. 2z, 2z ...25, and the

are ex-

acceasible state variables, using equation (2-8) as follows:

5 143
. T, (-1 Ay, (z.-x.)
_ 18 574,1°%17%1 . -
Bagl [V j=1, 2, «o, 5 (3-35)
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15 16
’ t26
. £36
° 46
55 46
(3-36)
30855 1 = Tp(850, 1 * E5p(8g)s

where (AS)i i = A5 without the elements of the ith row and jth column.
3

For only X, accessible, it is assumed that:

c=11

From F = GC,
~
i1
21
31
4]

[
li
= e

From E = TB,
12
t22

E=1¢%5
42

“52

t

51

0 0 0 0 0]

-

16
26
36
46
56

[p A n S = S o S o

36

(3-37>

(3-38)

for r = 3 {control torques (3-39)
applied to all three bodies).
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SECTION 4

4.0 DEVELOPMENT QF FOUR BODY SINCLE AXIS MODEL ANMD ITS REDUCED
STATE LINEAR OBSERVERS

4.1 MODEL EQUATIONS

The state variable form of the four body single axis model of a flexible

gspacecraft deplcted in Figure 4-1 was written in the following form. -

X = Ax + Bu (4-1)
y = Cx (4-2)
where:

T
£= (xl, [ ° o e ° oy KB)

_ Q ] a o T
= (Bl, 61, 62, 62, 63, 83, 64, 64)
T T T
T r
y_=(u1,a., ur) =(~—, oc,'I"_) (r =1, 2, 3 or 4)
1 r
T
= (yyps oo v 0y ¥) (m =1, 2, 3, 4, 5, 6 or 7)
C = mx8 measurement or observation matrix

Partitioning of this model by rigid body ylelds the following forms for

its coefficient matrices:
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FIGURE 4~1
FOUR BODY SINGLE AXIS MODEL
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(4-4)

for r = 4
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41 T 1. 445

(A=5)

85 I

The correspording block diagram appears in Figure 2-2.

4.2 COMPARISON OF THREE BGDY AND FODR BODY MDDELS

402,11 Introduction

In order to evaluate the effects of adding another rotational mass to a

single axis model the three and four body models partitioned by rigid body
were compared. More specifically the partitioned forms of the coefficient
matrices appearing in the state variable form of the model, equations (4=

1) and (4-2) were compared.

4.2,.2 Comparisom of "A® Matwices of Three and Four Body Models
The three body and four body A matrices partitioned by rigid body were.
presented in equations (3-3) and (4-3), respectively. The result of sup-

erimposing the three body A matrix upon the four body A matrix appears as

follows.
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0 1 | 0 o
[0} {0]
kg ky
-1 0 T o
1 i 1 i
- - . S
0 0 0 1 0 0
(0]
K, ; kK, . k, )
I | -1 T
2 2 2
e | — — — |I | S
| 0 o | 0 1 0 0
o]
! E% 0 I EZ 0 k3 0
T -1 T,
! 3 I 3 4
| — - — s =
. ! |
| [ 0 0 0 1
|
(0] [0]
‘ ! k3 0 | k3 o
! T T
_ | 4 |4 _
(4-6)
0 o
[o] =
0 0

On the right hand side of the above equation the last two columns of the
matrix, which appear due to the addition of the fourth body, aré parti-
tioned from the remainder of the matrix by solid lines. The addition of
the fourth body also results in'the appearance of another term at the in-
tersection of the sixth row and fifth column. Careful review of the over-
all pattern of non-zero elements in this matrix partitioned by rigid body
implies that each addition of a rigid body would result in the addition of

corresponding elements with respect to the two rows and columns added.

42
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For example, addition of a fifth riglid body to the four body model would
have the following effects.

%,
1) Addition of the term, TZ, to the element at the irtersection of the

eighth row and seventh column.

2) Addition of a ninth and tenth row and a ninth and tenth column con-

taining the following elaments:

o "1" at the intersection of the ninth row and tenth column

%,

0 T;' at the intersection of the eighth row and ninth column and at

the tenth row and seventh column.

[l —4!0

L

o - at the intersection of the tenth row and ninth column.

o "0" for each of the remaining elements.,
4.2.3 Comparisom of “B” Matrices of Three and Four Body Models

Generalized forms of the three body and four body B matrices were
superimposed for the case in which no control torques were appllied to the
fourth body. The result has the following form.

0 | 0 07
bir * b2 | by3

—.__[.___.'_..,_..
0

0 0

B e o (4=7)
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It is evident that in this case the addition of the fourth body without
control actuators results in the addition of two null rows to the B ma-

trix.

4.2.4 Comparison of “C° Matrices of Three apd Four Body Models

The specific form of the C matrix associated with the three body model
depends upon which of the six scalar state varlables of the model is inac-
cessible. If the state variable, xgq, representing the angular rate of
body 3 is inaccessible then the C matrix can be assumed to be of the form
given in equation (3-16). Partitioning this matrix by rigid body produces
the following form

C = (ol :+ I, 1 00 (3-16)

1 0 0 01
12 = Y [0] = J
0 1 0 0

Addition of a fourth body to the model for which neither its angular posi-
tion nor angular rate 1s accessible would result in the addition of two
null columns to the matrix on the right hand side of equation (3-16). For
each accessible scalar state variable associated with the fourth body an-
other row would be added to the C matrix with a "1" element in a position
correspounding to that variable., Hence, if one of the two state variables
associated with the fourth body were accessible, addition of the body
would add one null column and a non-null row and column with a "1" at
thelr common intersection. If both of the state variables associated with

the fourth body are accessible, the addition of this body to the model

44
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adds two non-null columns and two non-null rows to the matrix on the right
hand side of equation (3-16). The superposition of the three and four
body C matrices partitioned by rigid body yields the following.

R
1o | (01 | [0] | (o]
o1 1, | Lol ‘ (o]
c= f ' (4-8)
ooTool 1ol 0%0
—t -~k
[0] lf o1 | o1 ll 1,
L l i
where:

4.3 REDUCED STATE LINEAR OBSERVERS

4.301 Imtroduction

The minimum order of a reduced state linear observer required to recon-
struct the 8~m lnaccessible scalar state variables of the four body single
axis model of a flexible spacecraft represented by equations (4-1) through
(4~3) is p = 83~-m where m =1, 2, 3, 4, 5, 6 or 7. All of the reduced
state linear observers for this four body model may be written in the form
of equations (2-7) and (2-8) under the assumption that the observer coef-
ficient matrix, D, is diagonal and of dimensions pxp. The corresponding

observer weighting matrix 1s of the following form.

11 18
T=1]. ) (4=9)
tp,lo L] [ o o tP,S
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From equations (2-9), (4-4) and (4-9),

€12 14 16 t18
E=| . : ) . (4-10)
t t t
p,2 Py & ps6 P8 ~
fll o a ° ° ° @ ° f18
F= | . (4-11)
f 0 ° s ° ° o « f R
psl p,8

The corresponding observer block diagram appears In Figure 2-3.

4.3,2 Observer Synthesis Equations

From Luenberger (4-1), (4-2) and (4~3) and Sage (4-4) the equations for
synthesizing the reduced state linear observers for the four hody single
axls model represented by equations (4-1) through (4-5) are given by
equations (2~10) and (2-11). With coefficient matrices of the form listed

in 4.3.1 this set of observer synthesis equations reduces to the

following.
1+k i+kk]
. } D7y Oy Sy Eyp) + (D) CIVRPRAC IS ITLITR
1,2k i,
(4=12)
1+le+2 1+k+3
SRR V00 WAt C et ot VUL e VA WAV At ToF 1
A
14
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ty,2x-1 = di1%0 1,2 * i, ok

where tij are elements of the T matrix.

and
l—(d” +a ) a 0 0
ii 23 41
a =(d +a +a ) a 0
23 il 41 45 63
A = 2
i4 0 a -(d +a +a ) a
i 45 ii 83 &7 85
l
| 0 0 a ~(d +a )
67 ii 85
(4-13)

2
= ~(dyi+any) (84,01, 293084021

(614)1, } = 614 without the elements of the ith row and jth columm.

Tnaccessibility of a scalar state variable in the model equations (4~1),
(4-2) is reflected by a corresponding null c¢olumn in the C and F matrices
as implied in equation (2-11). For the generation of reduced state
observers for the four body model the number of inaccessible state

variables, p, can be 1, 2, 2. 4, 5, 6 or 7.

FIRST ORDER OBSERVERS (p = 1)

An observer of order at least one is requrad when only one of the eight
scalar state variables of the four body model is inaccessible. Therefore,

the total number of first order observers that can he generated for the

four body model is given by:

47
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The first order form of rhe linear observer equation is as follows:

z = dz + Eu + Gy (4=~14)

The F and T matrices associated with a first order observer for the four

body model then reduce to the following row forms.

£, 00 e e fa] (4=15)

T = [ tl tz a ° ° ° ° t (4—16)

The observer synthesls equations are then of the form of equation set
(4-12) and equation (4-13) with 1 = 1.

Since a first order observer corresponds to one of the scalar state varia-

bles being inaccessible, one of the fy (1 =1, 2, ooy 8) = 0.
Example
Suppose the scalar state representing the angular rate of body 4, Xg, is

inaccessible. Then 58 = ) and the observer synthesis equations reduce to

the following forms.
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e+l o k+2
(-1) (Aa)l,k(f1+df2) + (-1) (Aa)z,k(f3+df4)
Eak = 3
4
1+k+3 X+
"
k=1, 2, 3, 4
(4~17)
Bt <= dCZk_ + EZk k=1, 2, 3
|"(d2+a ) a 0 0
23 41
|
393 —(d +a,,+a,.) 69 0 |
a, = : |
0 345 -(d7+agta ;) 2g5
0 0 ~(a*+ag,)
2e7 3g5
= —(d%+a,,)(8,), | —a,.(8,) (4-18)
2374811 223\ %70
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where (Ak)i, j = 84 without the elements of the ith row and jth column
from equation (2-8), the synthesized scalar state, xa, is expressed in
terms of the scalar observer variable, z, and the accessible scalar state

variables as follows.

-~ 1 7
%g -?; [2 '1§1t1"1] (4=19)
For Xg inacecessible, it is assumed that:
_ ‘ OT
C = 17 | ° 'y (4-20)
_ N
where I; = 7x7 identity matrix,
From F = GC,
G=[ £ £, fg £, £5 £ £7 ] (4=21)
From E = TB,
E = [ Ly ty tg tg ] for r = 4 (control torques on zll 4 bodies) (4-22)
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4.5

OBSERVERS OF INTERMEDIATE ORDER (p = 2, 3, 4, 5 or &)

For those cases in which an intermediate number of the eight scalar states
of the four body single axis model is inaccessible, the minimum order of
the reduced state linear observer required to reconstruct these inaccessi-
ble states is given by p. In each case the number of aull columms in the
wmedsurement or observatlon watrix, G, and the F matrix alse is equal to

p. The general forms of the E, F and T matrices are given in equations
(4-9), (4-10) and (4~1l) for p =2, 3, 4, 5 or 6 where p represents the
number of inaccessible scalar state variables of the model. 1If any p of
the eight scalar state variables of the four body models are inaccessible,
then the total number of observers of order p that can be generated for

this model is given by:

8 gt
% = & T prepT (4-23

Example

Suppose the scalar states, Xy and xg, which represent the angular position
and rate of body 4, are inaccessible. Then fi? = fis =0 for 1 =1, 2 and

the observer synthesis equations reduce to the following forms.

i+ i+k+l
. A TR0 W At ThAe Tl 2 (8405 (Fyqtdy084,)
i, 2k Ai&
1442
(=1) (a,, ), (£, +d,.f. )
N 14 i,k 157%11%16 (5-24)
14
1=1, 2
k=1, 2, 3, 4
Bi,2x~1 = gty op ¥ £y oy k=1, 2,3

£y,7 = 414 8
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Where 4;, is expanded in equation (4-13) and (Aid)i, j is Ay, without the
elements of the ith row and jth column.

From equation (2-8) the synthesized scalar states, x5 and Xg, are
expressed in terms of the scalar observer varlables, z and 2z, and the

accessible scalar state varlables as follows.

LDy, (a5t x.)
o 14 2 2,1 17151 045% (4~25)
2
2 B
1+1
~ DY), (2 -3 e x0)
xg = i=1 2 2,2 i =143 3 (4~26)
2
for
ty7  tis
= = - ¥ -
By . . 7% = Figtayy * O (4-27)
27 28

Where (Az)i,j = 4, without the elements of the ith row and jth column.

For x; and Xg inaccessible, it 1is assumed that:

1o 0
L
C = L Lo (4-28)
loo
10 0
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Since F = GG,

11 12

2i 22

(€2t
E =
| 22 fas
12 t1a
E =
| Fa2 P4
Bl Fis
E =
| f22 tas
£, O
E =
|ty O

13

23

16

26

16

26

14 15

24 25

13

28

4.6 SEVENTH ORDER OBSERVERS (p = 7)

16

26

for r = 4 (control applied

to all four hodies

{for control torques applied
to bodies 1, 2 and 3)

{(for control torques

applied to bodies | and 2)

(for control torques

applied to body 1)

(4-29)

(4-30)

(4~31)

(4-32)

(4-33)

When any seven of the eight scalar state variables of the four body models

are lnaccessible, a linear observer of at least order seven is required.

The total number of seventh order observers that can be generated for the

four body models may be expressed as follows.

C7 = 8
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The observer synthesis equations are as presented in equation set (4-12)
and equation (4-13) with 1 =1, 2, ..s, 7. Since a seventh order observer
corresponds to seven of the scalar states being inaccessible, flj = f2j =

saa = f7j = () for seven of the eight values of the subscript, j.

Example

Suppose only the scalar state variable representing the angular position
of body 1, %), 1s accessible. Then the remaining scalar states, xp,
Kqs00, Xg are inaccessible, fi9 = f43 = oee = £33 =0 for i =1, 2, 3, 4,
5, 6 and 7 and the observer synthesis equations reduce to the following

forms.
+k
-1’ 01 ,kf1
B2k = A : K=1,2,3 4 1=1,2, soe, 7
? 14
(4-35)
£, 2k-1 = 44385, 0k k=1,2, 3,4

Where 614 i3 expanded in equation (4-13) and (Ai4)i, j is Ai4 without the
elements In the ith row and jth columm.

The synthesized scalar state variables, X, through Xg, are expressed in
terms of the observer variables. 2 through 27, and the accessible state

variable, x;, by utilizing equation (2-8) in the following form.

7
i+l
- L, (=1)7 7 (a;),  (z,~t, % )
i=] 774,k 71 4171
Xy = ; k=1, 2, aes, 7 (4~36)
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(A7) -t (A7)

1,1~ Fa2 (8,351 = t40(8y)

= +
12 2,1 T 3288751 T Bt

(4-37)

MG P L P PP R PAC 2N

Where (A7)i,j = A7, without the elements of the ith row and jth column.
For only X accessible, it is assumed that:

[1 000 00 0 0] (4~38)

(9]
[/}

From F GC,
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for r = 4 (control torques
applied to all four bodies)

(4~40)



4.7 REFERENCES

4-1

4=2

b=4

Luenberger, D.G., "Determining the state of a Linear System with
Observers of Low Dynamic Order", Ph.D. dissertion, Stanford

University, 1963.

Luenberger, D.G., "Observers for Multivariable Systems"”, IEEE

Transactions on Automatic Control, Vol. AC-1l, No. 2, April 1966, pp.

190-197.

Luenberger, D.G., "An Introduction to Observers"”, IEEE Transactions on

Automatic Control, Vol. AC-16, No. 6, December 1971, pp. 596-602.

Sage, A.P,, Optimum Systems Control. Englewood Cliffs, N.J.:
Prentice-Hall, Inc. 1968, pp. 306-312.

57

-4



550

5.1

5-al

SECTION 5
CONCLUSIONS AND RECOMMENDATIONS

During the period covered by this report three single axis models of a
prototype flexible spacecraft were written in state variable form and a
series of reduced state linear observers of various orders was generated
for each single axis model. Each of the single axis models developed con-
sisted of two or more bodies restricted to rotatiomal motion about a com—~
mon axis through their centers of mass. A distinct spring coefficient was
associated with each interconnection between the masses of each model.

The resulting linear models were written in state varilable form and later
partitioned by rigid body. This partitioning was done to facilitate the
expansion of the models by sequentlial addition of rigid bodies. The sin-
gle axis model development treated in this report commenced with a two bo-
dy model and progressed to three and four body models. Each of these mod-
els involved a transformation from the vector of scalar state variables to
a vector of measured or ohserved scalar states to reprasent the physical

situation in which one or more of the scalar states was inaccessible.

For each combination of single axis state variable model and inaccessible
scalar state(s) a reduced state linear observer was generated to recon-
struct those scalar states that were inaccessible. This was done because
the application of linear quadratic regulator (LQR) and closely related
time domain approaches to attitude control utilize all or nearly all of

the scalar states of the model of the spacecraft to be controlled.
CONCLUSIONS

The following conclusions were drawn mainly from the development of the
two body, three body and four body single axis models with inaccessible
scalar state variables of a prototype flexible spacecraft and the genera-
tion of the corresponding linear obseévers of minimum order required to

reconstruct these 1lnaccessible scalar states.
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Comparison of the coefficient matrices of single axis state varlable
models in ascendlng order of numbers of rigid bodies revealed that
successive A, B and C matrices form patterns that permit easy exten~
sion to models involving larger numbers of rigid bodies. This compar-

ison was facilitated by partitioning each model by rigid body.

For the single axis state varlable models treated in this report an T
body model has 2r scalar states consisting of angular position and

rate for each rigid body.

The minimum order required for a reduced state linear observer to re-
construct p inaccessible scalar states of a single axis state variable

model with a total of n scalar states 1s p where p =1, 2, «s., n-l.

Under assumption of a diagonal D matrixz in the reduced state linear
observer of minimum order to reconstruct the Inaccessible scalar
states of a given single axis state variable model the observer syn-
thesls equations reduce to a relatively simple form depending upon the

number of rigid bodies involved.

Comparison of the observer synthesis equations for the minimum order
linear observers corresponding to single axis models involving succes-
sively higher numbers of rigid bodies revealed that the observer syn-
thesis equations could be expanded easily to accomedate the addition

of another rigid body to the single axis model.

For the case in which any one of the n scalar states of the single

axis model is inaccessible the following statements apply.

a. The minimum required order of the corresponding linear observer is

one .

b. The total number of first order observers that can be generated

is ne.
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The E, F, G and T matrices associated with the first order

observer each contain a single row.

Each linear equation in the set of observer synthesis equations
expresses an element of the row matrixz, T, in terms of d and the
corresponding element of the row matrig, F, of the first order

observer and elements of the A matrix of the single axis model.

Solution for the one syntheslzed scalar state of the single axis
model iIn terms of the one scalar state of the flrst order observer
and the n-1 accessible scalar states of the single axis model in-

volves no matrix inversions.

For the case in which any p of the n scalar states of the single axis

model are inaccessible the following statements apply where p = 2, 3,

° ooy Tl"'2n

The minimum required order of the corresponding linear observer

is Pe

The total number of observers of order p that can be generated is

glven by:

n n!
o~ pTla-p)I

The E matrixz is of dimensions px(n/2).

The F and T matrices are each of dimensions pxn

The G matrix 1s of dimensions px(n-p)

The observer synthesis equations consist of sets of p linear

equations of the same form with each equation within one of these

sets expressing an element in a given column of the T matrix in
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terms of the elements in the correspoanding columns of the D and F
matrices of the observer and elements of the A matrix of the

single axis model.,

g. Solution for each of the p synthesized scalar states of the single
axls model 1in terms of the p observer scalar states and ihe n-p
accesgsible scalar states of the single axis medel requires

inversion of a matrix of dimensions pxp.

For the case in which any n-1 of the n scalar states of the single

axls model are inaccessible the following statements apply.

a. The minimum required order of the corresponding linear observer is

n“']. °

b. The total number of observers of order n-1 that can be generated

is n which is the same as for the first order observer.

¢. The E matrix is of dimensions (n-1)x%(n/2).

de The F and T matrices each are of dimensions (n-1)xn.

e, The G matrix is of dimensions (n-1)xl {vector of dimensiocn n-1).

f. The observer synthesls equations consist of gsets of n-1 linear
equations of the same form with each equation within one of these
sets expressing an element in a given column of the T matrix in
terms of the given elements in the corresponding columns of the D

and F matrices of the observer and elements of the A matrix of the

single axis model.
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g. Solution for each of the n—1 synthesized scalar states of the
gingle axis model 1n terms of the n-l1 observer scalar state of the

single axis model requires inversion of a matrix of dimensicns

(n"l)x(n-l)o
A multi-axis rigid body-flexible joint model of a flexible spacecraft
with weak coupling between 1ts axes might be represented approximately
under certain conditions by the corresponding number of single axis
models.
RECOMMENDATIONS

The following directlons are suggested for future study in the application

of attitude control to state varlable models of flexible spacecraft for

which one or more scalar states are 1lnaccessible.

lﬂ

The modular control techniques developed for the attitude control of
models of flexible spacecraft for which all scalar state variables are
accessible should be modified for application to the series of single
axis models and their associated reduced state linear observers

developed in the work treated in this report.

Selected combinations of single axis model and its assoclated linear
observer and modular attitude control system should be simulated on a
digital computer to support investigation of effects of changes in the

following single axis model and observer characteristies.

a. Ratios between the masses (rotational inertias) of bodies

comprising the single axis model

b. Magnitudes of spring and damping coefficients at the interfaces

between the rigid bodies of the single axis model

62

R



o

fa

Distribution and weighting of control torques applied to the rigid
bodies of the single axis model

Number and distribution of inaccessible scalar state variables of

the single axis model

Magnitudes of the elements of the D and € or F matrices of the re-

duced state observer

Presence of non~zero off-diagonal elements in the D matrix of the

reduced state observer

Effects of damping in single axis models upon the synthesis of the

corresponding reduced state linear observers should be evaluated,

The generation of reduced state observers to reconstruct inaccessible

scalar states of a model of a flexible spacecraft should be extended

to the three axis five body model of a prototype flexible spacecraft

developed earlier. This extension could be accomplished In the fol-

lowing sequence of steps.

do

be

Extend the four body single axis model to a five body single axis
model that could represent the axis of the linearized three axis
five body model that was found to be decoupled from the other two

axes of the model in earlier work.

Extend the generation of reduced state linear observers for the
four body single axis model with one or more inaccessible secalar

states to the corresponding five body model.
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c. Extend the generation of linear observers for a sequence of single
axis models treated in this report to a sequence of two axis mod-
els involving interaxial coupling culminating in a five body two
axis model that could represent the two coupled axes of the three
axis five body model of a prototype flexible spacecraft developed

previously,

The application of modular techniques to the attitude control of se-
lected combinations of a single axis model and its corresponding re-
duced state linear observer should be extended to the combination of
the single axis and two axis five body models representing the proto-
type flexible spacecraft and the corresponding reduced state observ-

erse.

The combination of single axis and two axis five body models and their
linear observers and modular attitude control systems should be simu-

lated on a digital computer.

Coefficients representing the sensitivity of the scalar states to pa~-
rameters of the combination of single axis and two axis five body mod-
els and their linear observers and modular attitude control systems

should be developed.
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